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Classification of
multidimensional spacetimes

PAWEL TURKOWSKI
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Mickiewicza 21, 31 - 120 Krakow, Poland

Abstract. We classify all eleven-dimensional spatially homogeneous spacetimes,
which contain a seven-dimensional compact subspace and admit a simple- transitive
group of isometry, by enumerating the real ten-dimensional Lie algebras which
contain an n-dimensional (n>> 7) compact Lie subalgebra. The main result of this
paper consists in giving a complete list of the distinct real ten- dimensional algebras
which admit a non-trivial Levi decomposition. It is hoped that this investigation
may be of some help in studying eleven-dimensional and ten-dimensional cosmo-
logies which are considered in the context of Kaluza-Klein, supergravity and
superstring theories.

1. INTRODUCTICN

The idea that the observable world is a part of a higher-dimensional manifold,
of which the extra spatial dimensions form a compact manifold whose size is
estremly small, is a promising approach to the unification of all the fundamental
forces of nature. If the extra dimensions of the world are, to be treated as a
reality, a drastically different character of the macro and micro-spaces is a cosmo-
logical conundrum [3, 17, 18]. It migth be that we just have to accept it as an
inexplicable fact; on the other hand, one can look for a driving force which
compelled the originally multidimensional universe to hide some of its dimensions.

There is a generally accepted opinion that the answer lies in the Einstein
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equations. In fact, there is no incompatibility between the fact that the universe
is apparently four-dimensional, and the idea that it originated from a multi-
dimensional phase. The desired four-dimensional final stage is hoped to be
achieved via FEinstein equations in some simple, e.g. (Friedman-Robertson-
Walker) x (n-sphere) models, thourgh the answer can lie not only in the laws
of motion, but also in the initial conditions of the model {20, 21].

Satisfactory though this answer may be, it is not clear what is the role of the
cross-product assumption. Clearly, then, to account for the mechanism of the
cosmological dimensional reduction we have to look at the wider class of the
models; the simplest non-cross product spaces, the evolution of which have
been analysed, are the SO (V) group manifolds [7].

It would be very desirable to give the full list of the multidimensional models.
Similarly as in the case of the three-dimensional homogeneous spaces, which
are classified into the nine Bianchi types, the classification of the multidimen-
sional homogeneous Riemannian spaces is based on the list of the algebras of
the Killing vectors which generate the isometry group of the given space. The
dimension and the structure of these algebras are related to the dimension and
topology of the space on which the symmetry group acts. In the previous paper
[5] we have classified ten-dimensional real Lie algebras which contain a seven-
dimensional compact subalgebras, under the assumption that the algebras are
decomposable into the direct sum L, ® L, (from now on, the algebra L means
the algebra of dimension r). These algebras can be used as the algebras of the
isometry groups G3x G7 which act simply-transitively on the spacelike ten-
dimensional sections of the eleven-dimensional spacetimes. The dimension 11
is singled out by the realistic Kaluza-Klein theories. Due to the compactness
of the extra seven dimensions, the isometry group G7 and the algebra L7 must
be compact, i.e. Abelian, or one of the following direct sums of Abelian and
simple so (3) algebras: L1 @so(3)®so(3)or 4L1 ® 50 (3).

In the present paper we shall give a complete description of the ten-dimen-
sional real Lie algebras which contain an n-dimensional (n >7) compact
subalgebra. The enumeration of the distinct ten-dimensional Lie algebras may
appear to be too special a problem. However for physical applications it is of
interest to classify all real Lie algebras of higher dimensions (see e.g. ref. [16]
and [7]). The algebras mentioned above classify all eleven-dimensional spatially
homogeneous spacetimes which contain a seven-dimensional compact subspace
and admit a simple-transitive group of isometry. The results are summarized
in Tables I-II. Only one semisimple compact algebra exists. The solvable
algebras containing an Abelian subalgebra are considered in Section 2.2. The
decomposable non-solvable algebras are listed in Table I, Sec. 2.3. In Sec. 3,
we present the explicit details of the computation of the algebras which admit
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a non-trivial Levi decomposition. The main result of the paper, the 30 algebras
of such a type is given in Table II. In the Appendix we give the similar list of
the nine-dimensional Lie algebras which contain an n-dimensional (n > 6)
compact subalgebras, this dimension being singled out by the superstring
theories.

2. CLASSIFICATION

Levi-Malcev theorem states that an arbitrary Lie algebra consists, in a sense,
of a maximal solvable ideal and a semisimple subalgebra [1, 9]. Consequently,
Lie algebras fall into the following three categories,

(a) the semisimple type algebras S,

(b) the solvable type algebras N,

(c) and the algebras which admit non-trivial Levi decomposition L =N +) S,
where +) denotes a semidirect sum. The subalgebra S and the ideal NV are called
a Levi factor of L and a radical of L, respectively.

Applying the theorem to the 10-dimensional real Lie algebras, we obtain the
following conclusions:

2.1. Semisimple algebras

By the Cartan theorem, a Lie algebra is semisimple if and only if it is the
direct sum of simple subalgebras. Cartan’s classification of all real simple Lie
algebras is well known. In the 10-dimensional case there are three semisimple
algebras: the algebra of the rotation group in five-dimensional space so(5) and
the de Sitter Lie algebras so(4, 1), so(3, 2). Unfortunately, the maximal compact
subalgebras of the de Sitter algebras (by virtue of the so called Cartan decom posi-
tion: so(4) and so(3) ® so(2), respectively [1]) are of dimension less than seven.
Hence, so(5) is the only semisimple algebra S10 which is appropriate as an algebra
of the Killing vectors of the 11-dimensional cosmology.

2.2. Solvable algebras

At present, a complete list of solvable Lie algebras is unknown. The number
of possible structures rapidly increases as one passes to higher dimensions, and
only solvable algebras of dimension up to five have systematically been studied
(see Ref. 13, 14,16, 10). Real nilpotent («nilpotent» implies «solvable») algebras
of dimension six are listed by Morozov {12]. Another subclass of the six-dimen-
sional solvable algebras, i.e. those which have a five-dimensional nilpotent ideal,
is treated by Mubarakzyanov [15]. Recently, an analysis of the seven-dimensional
nilpotent algebras has appeared in the literature {11].

We require N o to possess a seven-dimensional compact subalgebra. A solvable
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Lie algebra has no semisimple subalgebras, thus the only admissible compact
subalgebras of N is the Abelian algebra. Hence, the algebra N10 is an extension
of 7L, There is a great number of such decomposable extensions, e.g.
L,(1—-VH)e7L, algebras, where L,(.) denotes a Bianchi-type algebra.
Following Mubarakzyanov’s method, indecomposable solvable algebras can
be found, in principle, by considering the dimension of the maximal nilpotent
ideals. On the strength of Mubarakzyanov’s theorem, the dimension is greater
than, or equal to, 5 for the algebra of dimension 10 [13]. However, as far as
we know, nilpotent algebras of dimensions 8 - 10 are unknown and the construc-
tion of the class of the solvable algebras mentioned above is not possible.

2.3. Semidirect sums of a solvable algebra and a semisimple algebra

There exist six simple Lie algebras of dimension less than ten, namely: 3-
dimensional sI(2, R), so(3), 6-dimensional so(3, 1), and 8-dimensional su(3),
sI(3,R), su(2,1). Consequently, for 10-dimensional algebra, dimension of its
radical N has to be equal 1, 2, 4 or 7. Since the maximal compact subalgebras
of the sI(3,R) or su(2, 1) algebras (which are: s0(3), and so(3) & so (2), respecti-
vely [1]), have dimensions 3 and 3 + 1, the algebras L,,, with s/(3, R) or su(2, 1)
Levi factor, do not contain a 7-dimensional compact subalgebra. Therefore,
we consider the following semidirect sums

1) L, +)S, Sy =350(3) (£ 50(3) ®50(3) ®50(3)),
250(3) @s1(2, R),
s0(3)@ 2s1(2, R),
s0(3) @50 (3, 1),
s1(2, R) ®50(3, 1),

(c2) N,+)su(3),

(c3) N,+)S, S, = 250(3), 2512, R),
s0(3)®s1(2, R), s0(3, 1),

(c4) N,+)S, S, = s0(3),s1(2, R).

We endow the simidirect sums (cl1)-(c4) with a Lie algebra structure by using
[,]yand [, ]g ie each of these subalgebras. For the Lie brackets between the
two subalgerbas, we set

m [ei,eJ]=R(ei)*eJ, e, €S, ¢, EN,

where linear mapping R (e,.) N> e,—»R(ei) *e; ENisa derivation of N:
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2) R(e) e, el =[R(e;) x ), ex] + [e;, R(e,) * gl

The set {R(e;)} forms a Lie algebra itself (the derivation algebra). Furthermore,
the Jacobi identity implies that the homomorphism of S into the derivation
algebra, $ e; >R (ei), must be a representation of the semisimple algebra S by
real matrices. These statements reduce the classification problem for L10 =N+H)S§
to the one to find all those real irreducible representations of the algebras S9, Ss’
S¢and S3 which are the derivations of Ll, N2, N 4 and N7 respectively.

It is clear that the zero-matrix representation of S, acting in N is a derivation of
N. The zero-matrix representation of S reduces the semidirect sum N +) S to the
ordinary direct sum N @ S. For the convenience of the reader, Table I lists the
10-dimensional algebras that can be written as a direct sum of semisimple and a
solvable algebras. The algebras which do not contain an n-dimensional (n > 7)
compact subalgebra have been omitted from the list.

Table 1. The real Lie algebras of dimension ten which contain an n-dimensional (» >> 7) compact
subalgebra and which admit the Levi decomposition L =N ©S.

Type 10- dimensional algebra The maximal

compact subalgebra
(cl) LieSy
Sg=350(3), L,®350(3),
So=2s50(3)®sl(2,R), 2L, ®250(3),
Sg=s0(3)®s0(3,1), L,®2s50(3),
(c2) Nyesu(3):
N, — Abelian, 2L,®su(3),
N, — solvable: [e7, e)] = e, L,®su(3),

(c3) NyoSg:
S¢=250(3), Ny— arbitrary, mL (C Ny, 4=>m>1, mL @ 2s50(3),
Sg=90(3)@s5l(2,R), mL CNyd4=2m>3, (m+ 1)L es0(3),
S¢=50(3,1),Ny=4L, 4L ®50(3)

(04) N7®S3 M
S3=50(3),mLC N5, T>2m>4, mL, @ so(3),
S3=3sI(2,R),mLC Ny, T=>2m>6, (m+ 1)L,
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All we have left to do is enumerate the various possible non-zero representa-
tions of the Levi factors mentioned above and calculate the admissible radicals
in order to find all possible algebras. This is the subject of the next Section.

3. THE ENUMERATION OF THE DISTINCT REAL TEN-DIMENSIONAL
ALGEBRAS WHICH ADMIT A NON-TRIVIAL LEVI DECOMPOSITION

Now, we shall turn to our main task, an examination of the algebras which
are not direct sums of semisimple and a solvable algebras of a lower dimension.
For later purposes we collect here some facts concerning representations.

THEOREM 1. Every reducible representation of a semisimple real Lie algebra
is completely reducible [19, 4].

THEOREM 2. Therepresentations D, (J =0, —;— ,1,...) of dimensiond =2J + 1,
form the complete list of irreducible representations of sl(2, C).

D .

it
2J
2J-2
e~ ,
-2J
0 27 0
0 2J-—1 1 0
e, 0 , €y 2 0
1
0 2J 0
where {el, e, es}, with the multiplication table [el, e2] =2e, [el, e3] =—12e,

le,, e;] = e,, form a basis of s1(2, C) [19, 6].

Remark. Since the algebra so(3) and s/(2, R) are the real forms of the complex
Lie algebra si(2,C), theorem 2 provides (real) representations of s/(2, R) and
(complex) representations of so(3); these are the matriqes: DJ(e_l)E '5 D_, (ez) +
+ £ Dy(e), D) =— 2 D,le,) + + Dyle,), D’ ;)= 1 D, (e)), where {€,,,,&,)
forms a basis of s0 (3).

Fortunately, there is a fundamental theorem, due to Cartan, connecting
complex irreducible representations and real irreducible representations (see
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Ref. [2], [8]). For the three, five and seven-dimensional representations D7
(J=1,2,3) a trasformation matrix U can be found such that the representa-
tion Ry, = UD’U"! is real [4]. For example, the adjoint representation (ad)
of so(3) algebra is equivalent to the representation D! The representations of
this type are called, after Iwahori [8], the representations of the first class and
denoted Rg (which is equivalent to ad so(3)), R51 and RI, respectively. To
«reaiify» the complex representation DY2 amounts to treating the complex

A -B
matrices 4 + iB as the real matrices (B A ) of the double size. Then we have

an irreducible real representation of the second class Rf .

The Cartan’s theorem implies that the real irreducible representations of
s0(3) :ad so(3), RY, Ré, RJ, are the only one of dimension 7 or less. We will
not present the method of finding the matrices U mentioned above but simply
give the explicit matrix representations: R, RSI, R;'. These are the following.

1.
R
1 1
0 O 0 - — 0 -— 0 0
2 2
1 1
0 0 —— 0 — 0 0 0
) 2 _ 2
€~ 1 y €™ 1 )
0 — 0 0 0 0 0 — —
2 2
1 1
- 0 0 0 0 0 — 0
2 2
1
0 0 —— 0
2
1
0 0 0 —
_ 2
63—> 1
- 0 0 0
2
1
0 —— 0 0
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-2 0

0

0

0 -3 0

0
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b -3 0 0 0 © 0\
(3 0 0 0 0 0 O
0 0 0 —2 0 0 0O
e;—> |0 o 2 0O o0 0 0}.
0 0 0 0 0 —1 0
0 0 0 0 1 0 0
\0 0 0 0 0 O 0/

THEOREM 3. Let L be the direct sum of two semisimple algebras L' and L".
Then any irreducible representation R of L is equivalent to the tensor product
of irreducible representations R' and R" of L' and L" [19].

A consequence of theorems 1 - 3 is that there is no non-zero 1 x 1 representa-
tion of semisimple S9 algebras. Also the algebra su(3) has no non-zero 2 x 2
real representation. To show how the method does work, we give the calcula-
tions in details for L,) = N, +) 2s0(3). This is an example of case (c3), Sec. 2.3.

The algebra 2s50(3) is defined by the following non-zero commutation relations
of the basis elements

. le;s e].] = €51 €k (fori,j,k=1,2,3),

[ep, eq] = €py,6, (forp,q,r =4,5,6),
where {e,, ..., e} are the basis elements. Since so(3) has a representation by
3 x 3 matrices (the adjoined representation) and none of smaller degree than
3, we can set

00 0 0 0 0 10 0 —1 0 0
00 —1 0 0 0 0 0 1 0 00
Re=lo 1 0 ofR@={1 0 0 ofF@=0 0 0
00 0 0 0 0 0 0 0 0 00

R(e,) = R(ey) = R(eg) = 4 x 4 zero-matrix.
This, via relation (1), implies the following commutation relations

leys e8] =+ e, [ez, e7] = e, les, e7] =+ eg
)

[el’ 89] = esy [825 99] =+ e7a [63, eg] == 87
where {e,, ey, ey, €0} are the basis elements of N, Jacobi identity (2) implies
that the 4-dimensional solvable algebra N 4 is Abelian (all the rest commutators
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are equal to -zero) or it is a solvable algebra given by the following non-zero
commutators

) [eJ,elo] =e,, J=17,8,9.

This is the algebra Aizé in the list by Patera at al. [16], or the algebra g4’5(B =y=1)
in Mubarakzyanov’s notation [13]. Hence, there are the following two algebras
defined by egs. (3-4) and (3 -5), respectively: qul = (4L1 +)so@B) ®so(3)
and L10,2 = (Ai:; +)50(3)) ®50(3). The notation is that Lr’]. is the j** type of
an r-dimensional algebra.

The seven-dimensional compact subalgebras of the algebra L10,1 areL @ 250(3)
and 4L1 @ 50(3). The elements of the compact subalgebra Le 250(3) are linear
combinations of {el, cees € elo}, whereas the subalgebra 4L1 ® 50 (3) is spanned
by {ep - - ,elo). The seven-dimensional compact subalgebra of the algebra L10,2
isL;® 250(3). The elements of the compact subalgebra are linear combinations of
{el, cee s g em}.

In all cases (c3) - (c4), Sec. 2.3, we proced analogously; the results are presented
in Table II. We present the radicals N, the Levi factors S and the representation of

Table II, The list of ten-dimensional real Lie algebras which contain an »-dimensional (# > 7)
compact subalgebra and which admit the Levi decomposition L =N +) S.

Name The Levi decomposition Tr;}}et;zfzp Itisv‘;%acttigrn
Ligy Li®(BLi+)s0(3))@so(3) adso(3)

Ligy “zi+)soB) eso(3) adso(3) @ [0]
Ly (4L, +)s0(3)) @ s0(3) R

Lis | 2L12 QLS RY)e50(3) | by

Lygs Ly® (A3 +)sl(2,R)) @ s0(3) Dy,® Dy

Lygs L1®@BLy+)sl(2,R)@s0(3) D,

Lig7 (@L;+)sI2,R))®s50(3) Dy,

Ligg (4L, +)sl(2,R)) @ 50(3) Dy,®Dy),

Ligo 4L,® (3Ly+)s0(3)) adso(3)

L | 3L12 @i +)s0(3)) ad 50(3) @ [0]
Lign | 3L12(@4L1+)s0B3) RY

Lig1 2L, (5Ly +) s0(3)) R!

L3 Li® (6L +)s50(3)) ad so(3)®ad so(3)
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Name The Levi decomposition ?}‘;;szz?;:ftig:’
Lygia | 7L1+)s0(3) R}

Ligis | 7L1H)s0@) RY o ad s0(3)
L | 5L1®Q2L1+)sI(2,R)) Dy,

Lygyy | 4L12(31+)sI(2,R)) Dy;® Dy

Ligig | 4L;®(BL;+)sl(2,R)) D,

Ligrg | 3L1® (L +)sl(2,R) Dy

Ligyp | 3L12(AL1+)sI2,R) Dy Dy,
Lygy | 2L;2(GL;+)sI2,R)) D,

Lygyp | 2L39(5L;+)sI(2,R)) D;e D,

Ly | L1®(6L1+)sI(2,R) Dy,

Lygu | L1®(6L1+)sI2,R)) Dy,6 Dy
Ly | L12(6Ly+)sIQ2,R) Dy, Dy,© Dy
Ligx | L1©(6Ly+)sl(2,R)) D,®D,

Lyy | 7Ly +)sI@2,R) D,

Lygs | 7L1#)slQ,R) Do Dy,

Lygw | 7L1H)sl2,R) Dy,D,

L1Q30 7L1+)S1(2,R) D19D1/2®D1/2

the algebra S determining the semidirect sum (as defined in Equation (1)). The
following notation is used: so(3) and sI(2, R) denote the simple three-dimensio-
nal algebras. The Abelian n-dimensional algebra is denoted by nL,. The basic
commutation relations of the algebrasAl1 andA}‘;; are [e2, e3] =e,and [ei, e4] =e;
(fori =1, 2, 3), respcectively.

A number of algebras which do not contain an n-dimensional (n > 7) compact
subalgebra do exist. This is demonstrated by the following example. Consider
the semidirect sum of an N, and the s/(2, R) algebras defined by the representa-
tion D1/2€B D0 of si(2, R):

[61,62] 2262: [81163] =_‘2€3, [92; 63] =e1,
(6) [ela 64] = 64, [62, es] = 64, [63, 64] = e5’

[elﬁ es] = es)
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where legs ey e,} are the basis elements of sI(2,R) and N, is spanned by
{e4, e es}. It can be easily verified that condition (2) is satisfied if and only
if Ny;= 3L, Ny = A3,1’ where A3’1 is defined by [e4, es] =egsOr Ny = A3,3, where
A3’3 is defined by [e,, e} =e,, leg, €] = e5. This provides the ten-dimensional
algebras L10,4’ L10,5 and L,,=1L,® (A3’3 +)sl(2, R))®s50(3), respectively.
However, the last-mentioned algebra does not contain a 7-dimensional compact
subalgebra. The algebras of this type have been omitted from Table I1.
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APPENDIX

We give the list of nine-dimensional real Lie algebras which contain a compact
subalgebra of dimension n > 6. There are three semisimple algebras which possess
the above property: the compact algebra 350 (3)and the algebras 250 (3) @ sI(2, R),
so(3) @ s0(3,1) which contain Ll ® 2s50(3) and 2s50(3) as the maximal compact
subalgebras, respectively. In Table III the algebras which admit the Levi decompo-

Table III. The list of 9-dimensional real Lie algebras which contain an »-dimensional (z > 6)
compact subalgebra and which admit the Levi decomposition L=N & 8§,

] . The maximal
Type 9-dimensional algebra compact subalgebra
) | LewE) bros@)

(c2) N3©8,:

S¢=250(3), N3 — arbitrary, 2L,@2s50(3)
S¢=s0(3)@®sl(2,R), Ny— arbitrary, 3L;@50(3),
3Ly®s50(3, 1), 3L,® 50(3),

S3=sl(2,R),mL1CN6, 62”1}5, (m+1)L1,
S3=350(3), mL{CNg, 62m>3, mL{®s50(3).




sition L = N @S are given. There are 20 algebras which admit a non-trivial Levi
decomposition L = N+)S. Their structure is presented in Table IV. These
algebras are contained, as subalgebras, in the ten-dimensional algebras listed
in Table II; for the commutation rules see Section 3.

Table IV. The list of nine-dimensional real Lie algebras which contain an » -dimensional (» > 6)

CLASSIFICATION OF MULTIDIMENSIONAL SPACETIMES

compact subalgebra and which admit the Levi decomposition L =N +) S.

Name The Levi decomposition Zﬁeﬂ:ip Irdijnf:;ttigf
Lg, (3L, +)s0(3)) @s0(3) adso(3)

Ly, LieQL;+)sl(2,R))®s0(3) Dy,

Lgs (A3, )82, R)) @ 50(3) Dy,° D

Loy (BL;+)slQ2,R)) ®50(3) D,

Lgs 3L,® (3L, +)s50(3)) adso(3)

Lgg 2L ® (A34+) s0(3)) ad s0(3) € [0]
Lg, 2L,® (4L, +) 50(3)) RY

Lgg Ly®(5Ly+)s0(3)) R!

Lgg 6L, +)so(3) ad s0(3) ® ad s0(3)
Loy | 4Ly®(2L1+)sI(2,R)) Dy,

Loy, | 3L1®(A3,+)sI2,R)) Dy,©D,

Lgy, | 3L,®(BLy+)sl(2,R)) D,

Lgys | 2Ly@(4Ly+)sI(2,R)) Dy,

Loy | 2Ly®(aLy+)sI(2,R)) D22 Dy,

Lgys | Ly®(SLy+)sI2,R) D,

Loig | Ly®(5L;+)s(2,R)) D,eD,,

Lgyy 6L,+)sl(2,R) Dy,

Lgjg | 6L,+)sI2,R) Dy, D;p

Lgyg 6L,+)sl(2,R) D,,®D,,®Dyp
Loy | 6L,+)s(2,R) D,eD,
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