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Abstract. We classify all eleven-dimensionalspatially homogeneousspacerimes,
which contain a seven-dimensionalcompactsubspaceandadmita simple-transitive
group of isomeiry, by enumeratingthe real ten-dimensionalLie algebras which
contain an n-dimensional(n ~ 7) compactLie subalgebr~Themain resultof this
paperconsistsin givinga completelist of thedistinctreal ten-dimensionalalgebras
which admit a non-trivial Levi decompositionIt is hopedthat this investigation
may be of somehelp in studyingeleven-dimensionalandten-dimensionalcosmo-
logies which are consideredin the contextof Kaluza-Klein, supergravityand
superstringtheories.

1. INTRO DUCT!ON

The ideathat the observableworld is a partof a higher-dimensionalmanifold,

of which the extra spatial dimensionsform a compactmanifold whosesize is
estremlysmall, is a promisingapproachto the unification of all the fundamental

forces of nature. If the extra dimensionsof the world are, to be treatedas a
reality, a drasticallydifferent characterof the macroandmicro-spacesis a cosmo-

logical conundrum[3, 17, 18]. It migth be that we just have to acceptit as an
inexplicable fact; on the other hand, one can look for a driving force which
compelledthe originallymultidimensionaluniverseto hide someof its dimensions.

There is a generally acceptedopinion that the answer lies in the Einstein
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equations.In fact, thereis no incompatibility betweenthe fact that the universe
is apparentlyfour-dimensional,and the idea that it originated from a multi-

dimensional phase. The desired four-dimensional final stage is hoped to be
achieved via Einstein equationsin some simple, e.g. (Friedman-Robertson-
Walker)x (n-sphere)models, thourgh the answer can lie not only in the laws

of motion,butalso in the initial conditionsof the model [20, 21].
Satisfactorythoughthisanswermay be, it is not clearwhat is the role of the

cross-productassumption.Clearly, then,to accountfor the mechanismof the
cosmologicaldimensional reduction we have to look at the wider classof the
models; the simplest non-crossproduct spaces,the evolution of which have

beenanalysed,are the SO(IV) group manifolds [7].
It would be very desirableto give the full list of the multidimensionalmodels.

Similarly as in the case of the three-dimensionalhomogeneousspaces,which
are classified into the nine Bianchi types, the classificationof the multidimen-
sional homogeneousRiemannianspacesis basedon the list of the algebrasof

the Killing vectorswhich generatethe isometry group of the given space.The
dimensionand the structureof these algebrasare related to the dimensionand

topology of the spaceon which the symmetry group acts. In the previouspaper
[5] we have classifiedten-dimensionalreal Lie algebraswhich contain a seven-

dimensionalcompactsubalgebras,under the assumptionthat the algebrasare
decomposableinto the direct sum L

3 0 L7 (from now on, the algebraL~means

the algebraof dimension r). Thesealgebrascan be used as the algebrasof the
isometry groups G3 x G7 which act simply-transitively on the spacelike ten-
dimensionalsections of the eleven-dimensionalspacetimes.The dimension 11

is singled out by the realistic Kaluza-Klein theories. Due to the compactness
of the extra sevendimensions,the isometry group G7 and the algebraL7 must

be compact, i.e. Abelian, or one of the following direct sumsof Abelian and
simpleso(3)algebras:L1 0 so(3) 0 so(3) or 4L1 0 so(3).

In the presentpaper we shall give a complete descriptionof the ten-dimen-
sional real Lie algebras which contain an n-dimensional (n ~ 7) compact
subalgebra.The enumerationof the distinct ten-dimensionalLie algebrasmay
appearto be too special a problem. However for physical applicationsit is of
interest to classify all real Lie algebrasof higher dimensions(see e.g. ref. [16]

and [71).The algebrasmentionedaboveclassify all eleven-dimensionalspatially
homogeneousspacetimeswhich contain a seven-dimensionalcompactsubspace
and admit a simple-transitivegroup of isometry. The results are summarized

in Tables I - II. Only one semisimple compact algebra exists. The solvable
algebrascontaining an Abelian subalgebraare consideredin Section 2.2. The
decomposablenon-solvablealgebrasare listed in Table I, Sec. 2.3. In Sec.3,
we presentthe explicit details of the computationof the algebraswhich admit
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a non-trivial Levi decomposition.The main result of the paper,the 30 algebras

of such a type is given in Table II. In the Appendixwe give the similar list of
the nine-dimensional Lie algebras which contain an n-dimensional (n ~ 6)
compact subalgebras,this dimension being singled out by the superstring
theories.

2. CLASSIFICATION

Levi-Malcev theoremstates that an arbitrary Lie algebraconsists,in a sense,
of a maximal solvable ideal and a semisimplesubalgebra[1, 9]. Consequently,
Lie algebrasfall into the following threecategories,

(a) the semisimpletype algebrasS,

(b) the solvabletypealgebrasN,
(c) and the algebraswhichadmitnon-trivial Levi decompositionL = N+) S,

where +) denotesa semidirectsum. The subalgebraS and the ideal N are called

a Levi factor of L anda radicalof L, respectively.
Applying the theoremto the 10-dimensionalreal Lie algebras,we obtain the

following conclusions:

2.1. Semisimplealgebras

By the Cartan theorem, a Lie algebrais semisimpleif and only if it is the
direct sum of simple subalgebras.Cartan’s classificationof all real simple Lie
algebrasis well known. In the 10-dimensionalcasethere are threesemisimple
algebras:the algebra of the rotation group in five-dimensionalspaceso (5) and

the de Sitter Lie algebrasso(4, 1), so(3,2). Unfortunately,the maximal compact
subalgebrasof the de Sitter algebras(by virtue of the so calledCartandecomposi-
tion: so(4) andso(3) 0 so(2), respectively [1]) are of dimensionless thanseven.
Hence,so(S)is the only semisimplealgebraS10which is appropriateas analgebra
of the Killing vectorsof the 11 -dimensionalcosmology.

2.2. Solvable algebras

At present,a completelist of solvable Lie algebrasis unknown.The number
of possiblestructuresrapidly increasesas one passesto higherdimensions,and
only solvablealgebrasof dimensionup to five havesystematicallybeenstudied

(see Ref. 13, 14, 16, 10). Real nilpotent (<<nilpotent>>implies <<solvable>>)algebras
of dimensionsix are listed by Morozov [12]. Anothersubclassof the six-dimen-
sional solvablealgebras,i.e. those which havea five-dimensionalnilpotent ideal,
is treatedby Mubarakzyanov[15]. Recently,ananalysisof the seven-dimensional
nilpotentalgebrashasappearedin the literature [11].

We requireN10 to possessa seven-dimensionalcompactsubalgebra.A solvable
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Lie algebra has no semisimple subalgebras,thus the only admissiblecompact

subalgebrasof N is the Abelian algebra.Hence, the algebraN10 is an extension

of 7L1. There is a great number of such decomposableextensions,e.g.
L3(I — VII) 0 7L1 algebras, where L3( . ) denotes a Bianchi-type algebra.
Following Mubarakzyanov’s method, indecomposablesolvable algebras can
be found, in principle, by consideringthe dimensionof the maximal nilpotent
ideals. On the strength of Mubarakzyanov’stheorem,the dimensionis greater

than, or equal to, 5 for the algebraof dimension 10 [13]. However, as far as
we know, nilpotentalgebrasof dimensions8 - 10 areunknownand the construc-

tion of the classof thesolvablealgebrasmentionedaboveis notpossible.

2.3. Semidirect sumsof a solvablealgebra and a semisimplealgebra

There exist six simple Lie algebras of dimension less than ten, namely: 3-

dimensionalsl(2,R), so(3), 6-dimensionalso(3, 1), and 8-dimensional su(3),
sl(3,R), su(2, 1). Consequently,for 10-dimensionalalgebra, dimension of its
radicalN has to be equal 1, 2, 4 or 7. Since the maximal compactsubalgebras

of the sl(3,R)or su(2, I) algebras(which are:so(3),andso(3)nso(2),respecti-
vely [1]), havedimensions3 and 3 + 1, thealgebrasL10, withsl(3, R) or su(2, 1)
Levi factor, do not contain a 7-dimensional compactsubalgebra.Therefore,
we considerthe following semidirectsums

(cl) L1 +)S9, 59= 3so(3)(~so(3)0so(3)0so(3)),

2so(3)0 sl(2,R),

so(3)0 2s1(2,R),

so(3)Oso(3,1),

sl(2,R)~so(3,I),

(c2) N2+)su(3),

(c3) N4+) ~6’ S6= 2so(3), 2s1(2,R),

so(3)0 sl(2,R), so(3,1),

(c4) N7+) S3~ S3= so(3), sl(2,R,.

We endow the simidirect sums(cl) - (c4) with a Lie algebrastructureby using

‘N and [ , ]~ie eachof these subalgebras.For the Lie bracketsbetweenthe

two subalgerbas,we set
(1) [e,, e~J= R(e1)* e~, e. ES, e~EN,

wherelinearmappingR(e1):NS e1-+R(e~)* e1ENisa derivationof N:
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(2) R (e
1) * [es, eK] = [R (e1) * e~,e~]+ [e1, R(e1)* e~J.

The set {R (e1)} forms a Lie algebraitself (the derivation algebra).Furthermore,
the Jacobi identity implies that the homomorphismof S into the derivation

algebra,S ~ e1-+R (e1), must be a representationof the semisimplealgebraS by
real matrices. Thesestatementsreducethe classificationproblemfor L10= N +) S

to the one to find all thosereal irreduciblerepresentationsof thealgebrasS9~~8’

S6andS3whichare the derivationsof L1, N2, N4andN7 respectively.
It is clear that the zero-matrixrepresentationof S, actinginN is a derivationof

N. The zero-matrix representation of S reducesthe semidirect sumN +) S to the

ordinary direct sum N 0 S. For the convenience of the reader, Table I lists the

10-dimensionalalgebrasthat can be written as a direct sum of semisimple and a

solvable algebras.The algebraswhich do not contain an n-dimensional(n a 7)
compactsubalgebrahave been omitted from the list.

Tablet. The realLiealgebrasof dimension tenwhichcontainann-dimensional(n ~ 7) compact
subalgebraand which admit theLevi decompositionL = N ~ S.

ThemaximalType 10-dimensionalalgebra
compactsubalgebra

(el) L1~S~

S9=3so(3), L1®3so(3),

S9=2so(3)esl(2,R), 2L1~2so(3),

S9=so(3)~so(3,l), L1®2so(3),

(c2) N2~su(3):

N2 — Abelian, 2L1~su(3),

N2—solvable:[e1,e2]=e2 L1~su(3),

(c3) N4~S6:

S6=2so(3),N4—arbilrary,mL1C/V4,4~m~l,~~L1~2so(3),

S6=so(3)asl(2,R),mL1cN4,4�m~3, (m+l)L1eso(3),

S6=so(3,1),N4=4L1 4L1~so(3)

(c4) N7~S3

S3=so(3),mL1CN7,7~m~4, mL1~so(3),

S3=sl(2,R),mL1CN7,7~m~6, (m+ l)L1
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All we have left to do is enumeratethe variouspossiblenon-zerorepresenta-

tions of the Levi factors mentionedaboveand calculatethe admissibleradicals
in order to find all possiblealgebras.This is the subjectof the next Section.

3. THE ENUMERATION OF THE DISTINCT REAL TEN-DIMENSIONAL
ALGEBRAS WHICH ADMIT A NON-TRIVIAL LEVI DECOMPOSITION

Now, we shall turn to our main task, an examination of the algebras which

are not direct sumsof semisimpleanda solvablealgebrasof a lower dimension.
Forlaterpu~oseswe collectheresomefactsconcerningrepresentations.

fHEOREM 1. Every reducible representationof a semisimplereal Lie algebra
is completelyreducible[19, 4].

THEOREM 2. TherepresentationsD~(J = 0, ~-, 1,.. . ),ofdimensiond = 2J+ 1,
form the completelist of irreduciblerepresentationsofsl(2, C).

D~:

2J

2J— 2
e

1-~ .

—2J

0 2J 0

0 2J—1 1 0

e3-÷ 0 . ,e3-~ 2 0

0 2J 0

where {e1, e2,e3}, with the multiplication table [e1,e2] 2e7 [e1,e3] = — 2e3,

[e2,e3] = e1, form a basisofsl(2,C) [19, 6].

Remark. Since the algebraso(3) andsl(2, R) are the real forms of the complex
Lie algebrasl(2,C). theorem2 provides(real) representationsof sl(2, R) and
(complex) representationsof so(3); theseare the matrices:D~(e~)~fr
+ -~~-D1(e3), D~(e2)~— ~2-D~(e2)+ -F D~(e3),D’(e~)~-~~-D~(e1),where{ë1,ë2,ë~}
formsa basisof so(3).

Fortunately, there is a fundamentaltheorem, due to Cartan, connecting
complex irreducible representationsand real irreducible representations(see
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Ref. [2], [8]). For the three, five and seven-dimensionalrepresentationsD1

(J = 1,2,3) a trasformationmatrix U can be found such that the representa-

tion R
21~1= UD’U

1 is real [4]. For example,the adjoint representation(ad)
of so(3) algebrais equivalent to the representationD1. The representationsof

this type are called, after lwahori [8], the representationsof the first class and

denoted R~(which is equivalent to ad so(3)), R
5’ and R~,respectively. To

<<reaiifyv the complex representationD
112 amounts to treating the complex

A -B
matricesA + iB as the realmatrices B of the doublesize. Thenwe have

an irreducible real representation of thesecondclass Ri’.

The Cartan’s theorem implies that the real irreducible representationsof
so(3) : adso(3),Ri’, R~,R~,are the only one of dimension7 or less. We will
not presentthe method of finding the matricesU mentionedabovebut simply

give the explicit matrix representations:Ri’, R~,Rç. These are the following.

R”~4.

1 1
00 0 —— 0 ——0 0

2 2

1 1
00—— 0 — 0 0 0

2 2

1 1 2 1

0— 0 0 0 0 0——
2 2

1 1
—0 0 0 0 0— 0
2 2

0 0 —-f-- ~
2

0 0 0 —

2
e3l

— 0 0 0
2

0 —i.- 0 0
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R~: 0 0 0 —2 0 0 0 —2 0 0

0 0 2 0 0 0 0 0 —2 0

1 3 1
0 ——00—— —0 0 0 0

e
1-+ 2 2 e2—* 2

1 1 3
— 0 0 0 0 0 — 0 0 ——

2 2 2

0 0 20 0 00 0 2 0

0 —2 0 0 0

20000

0 0 0 1 0

001 00

00000

0 0 0 —3 0 0 0

0 0 30 0 0 0

1 5
o —— 0 0 0 —— 0

2 2

e—~ 1 5
— 0 00— 0 0’

2 2

0 0 0 —l 0 0 —2

0 0 1 0 0 0 0

0 0 00 3 0 0

0 0 —3 0 0 0 0

0 0 0 —3 0 0 0

1 5
— 0 0 0 —— 0 0
2 2

e—~ 1 52 0 — 0 0 0 —— 0
2 2

00 1 0 0 0 0

o 0 0 1 0 0 —2

00 0 0 0 3 0
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0 —3 0 0 0 0 0

3 000000

0 0 0 —2 0 0 0

e
3-÷ 0 0 2 0 0 0 0

0 0 0 0 0 —1 0

00001 00

0000000

THEOREM 3. Let L be the direct sum of two semisimplealgebras L’ and L”.
Then any irreducible representationR of L is equivalentto the tensorproduct
ofirreduciblerepresentationsR’ andR“of L’ and L” [19].

A consequenceof theoremsI - 3 is that thereis no non-zero I x 1 representa-

tion of semisimpleS9 algebras.Also the algebrasu(3) has no non-zero2 x 2
real representation.To show how the method doeswork, we give the calcula-

tions in details for L10 = N4 +) 2so(3). This is an exampleof case(c3),Sec.2.3.
The algebra2so(3)is definedby the following non-zerocommutationrelations

of the basiselements

[e1,e1] = e~/kek (fori,j, k = 1,2,3),
(3)

[e~~eql = �pqrCr (forp, q, r = 4, 5, 6),

where {e1, - . - , e6} are the basis elements. Since so(3) has a representationby
3 x 3 matrices (the adjoined representation)and none of smaller degree than
3, we canset

0 0 0 0 0 0 1 0 0 —l 0 0

0 0 —l 0 0 0 0 0 1 0 0 0
R(e)= R(e)= R(e)=1 01 00 2 —1000’ ~ 0000

0000 0000 0000

R(e4) = R(e5) = R(e6) = 4 x 4 zero-matrix.
This, via relation(I), implies the following commutationrelations

[e1, e8] = + e9, [e2, e7] = — e9, [e3, e7] = + e8
(4)

[e1,e9] = — e8, [e2, e9] = + e7, [e3,e8] = — e7

where {e7, e8, e9, e10} are the basis elementsof A~.Jacobi identity (2) implies
that the 4-dimensionalsolvable algebraN4 is Abelian (all the restcommutators
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are equal to zero) or it is a solvable algebragiven by the following non-zero

commutators

(5) [e~,e10]=e1, J= 7,8,9.

This is thealgebra~ in the list by Pateraat al. [16], or thealgebrag4 ~(i3= = 1)

in Mubarakzyanov’snotation [13]. Hence, there are the following two algebras

defined by eqs. (3-4) and (3- 5), respectively:L1Q1 = (4L1 +)so(3))~so(3)

andL102= (A~’~+)so(3)) ~ so(3). The notation is that L~1is the ~ type of

an r-dimensionalalgebra.
The seven-dimensionalcompactsubalgebrasof thealgebraL101 areL1~ 2so(3)

and 4L1 eso(3).The elementsof the compactsubalgebraL1n 2so(3)arelinear

combinationsof {e1, . . . , e~,e10}, whereasthe subalgebra4L1 ~ so(3) is spanned

by {e4, . . . , e~0).The seven-dimensionalcompactsubalgebraof the algebraL102
is L1 ~ 2so(3).The elementsof the compactsubalgebraarelinear combinationsof

{e1, . . . , e6, e10}.

In all cases(c3) - (c4), Sec.2.3, we procedanalogously;theresultsarepresented

in Table II. We presentthe radicalsN, theLevi factorsS andthe representationof

TableII. The list of ten-dimensional real Lie algebraswhichcontainan n-dimensional(n v 7)
compactsubalgebraandwhichadmittheLevi decompositionL = N +) S.

TherepresentationName TheLevi decomposition
of theLevi factor

L1~1 L1~(3L1+)so(3)) ~so(3) adso(3)

L1~2 (A~+)so(3))~so(3) adso(3)s~[0]

L1~3 (4L1+)so(3))~so(3) R~
1

L
1q4 2L1e (2L1+)sl(2,R))~so(3) D112

L1Q5 L1~(A31+)sl(2,R))eso(3) D112®D0

L1q6 L1~(3L1+)s1(2,R))~so(3) D1

L 1Q7 (4L 1+) sl(2,R))~so(3) D312

L1~8 (4L1 +) sl(2,R))~ so(3) D112~D112

L1~9 4L1®(3L1+)so(3)) adso(3)

L1Q10 3L1~(A,~+)so(3)) adso(3)~[0}

L1Q11 3L1~(4L1+)so(3)) R~
1

L
1~12 2L1~(5L1+)so(3)) R~

L1~13 ~ (6L1+)so(3)) adso(3)eadso(3)
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Table II. (continued)

Therepresentation
Name TheLevidecomposition of theLevi factor

L
1q14 7L1+)so(3) R4

L1~ 7L1+)so(3) R~
1aadso(3)

L
1Q16 5L1~(2L1+)sl(2,R)) 01/2

L1q17 4L1~(A31+)sl(2,R)) D~2~Do

L1~18 4L19(3L1+)sl(2,R))

L1~19 3L1 ~ (4L1+) sl(2,R)) D312

L1~~ 3L1e~(4L1+)sl(2,R))

L1~~ 2L1ED(5L1+)sl(2,R)) 02

L1~ 2L1~(5L1+)sl(2,R)) D1~DV2

L111,~ L15(6L1+)sl(2,R)) D5/2

L1~~ L1~(6L1+)sl(2,R)) D3/2~D~2

L1~,-~ L1 ~(6L1 +)sl(2,R)) 01/20D~2001/2

L1~ L10(6L1+)sl(2,R)) D1®D1

L1~~ 7L1+)sl(2,R)

L1~ 7L1+)sl(2,R) D20D1/2

Lic~ 7L1+)sl(2,R) 03/2001

L1~~ 7L1+)sl(2,R) DIOD1/20DV2

the algebra S determiningthe semidirectsum (asdefinedin Equation (1)). The
following notationis used:so(3) andsl(2, R) denotethe simple three-dimensio-

nal algebras.The Abelian n-dimensionalalgebra is denotedby nL1. The basic
commutationrelationsof thealgebrasA31 andA~are [e2,e3] = e1and[e1,e4] = e.

(fori = 1,2,3), respcectively.
A numberof algebraswhich do not containann-dimensional(n ~ 7) compact

subalgebrado exist. This is demonstratedby the following example.Consider
the semidirectsum of an N3 and the sl(2, R) algebrasdefinedby the representa-
tion D1120 D0 of sl(2,R):

[e1,e2] = 2e2, [e1, e3] = — 2e3, [e2, e3] = e1,

(6) [e1, e4} = e4, [e2, e5] = e4, [e3, e4] = e5,

[e1, e5] = — e5,
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where {e
1, e2,e3} are the basis elementsof sl(2,R) and N3 is spannedby

{e4, e5,e6}. It can be easily verified that condition (2) is satisfied if and only
if N3 = 3L1, N3 = A31, whereA31 is definedby [e4,e5] = e6 orN3 = A33,where
A33 is defined by [e4,e6] = e4, [e5,e6] = e5. This providesthe ten-dimensional
algebras L104, L105 and L10 = L1 0 (A33 +) sl(2,R)) 0 so(3), respectively.
However, the last-mentionedalgebradoesnot containa 7-dimensionalcompact

subalgebra.The algebrasof this type have been omitted from Table II.
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APPENDIX

We give the list of nine-dimensionalreal Lie algebraswhich containa compact

subalgebraof dimensionn ~ 6. Thereare threesemisimplealgebraswhich possess
theaboveproperty:the compactalgebra3so(3)andthealgebras2so(3)Osi(2,R),
so(3)0 so(3, 1) which contain ® 2so(3)and 2so(3)as the maximal compact
subalgebras,respectively.In Table III the algebraswhich admit the Levi decompo-

Table III. The list of 9-dimensionalreal Lie algebraswhich containan n-dimensional (a~ 6)
compactsubalgebraandwhich admit theLevi decompositionL = N OS.

ThemaximalType 9-dunensionalalgebra compactsubalgebra

(cl) L1Osu(3), L1Osu(3)

(c2) N3®S6:

S6 = 2so(3), N3 — arbitrary, 2L10 2so(3)

S6 = so(3)0sl(2,R),N3 — arbitrary, 3L1 0 so(3),

3L1ffJso(3,1), 3L1®so(3),

(c3) N60S3:

S3=sl(2,R),mL1CN6, 6~m~5, (m+l)L1,

S3=so(3),mL1CN6, 6~m~3, mL1Oso(3).
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sition L = N oS are given. There are 20 algebraswhich admit a non-trivial Levi

decompositionL = N +)S. Their structure is presentedin Table IV. These
algebrasare contained, as subalgebras,in the ten-dimensionalalgebraslisted

in Table II; for the commutationrulesseeSection3.

TableN. Thelist of nine-dimensionalrealLie algebraswhich containann-dimensional(n~ 6)
compactsubalgebraandwhich admit theLevi decompositionL = N +) S.

TherepresentationName TheLevidecomposition
of theLevifactor

L
91 (3L1+)so(3))eso(3) adso(3)

L92 L10(2L1+)sl(2,R))Oso(3) 01/2

L~3 (A31+) sl(2,R)) so(3) 131/20D0

L~4 (3L1+)sl(2~R))Oso(3) D1

L9,5 3L10(3L1+)so(3)) adso(3)

L~6 2L1 0 (A~,’~+)so(3)) adso(3)e[0]

L9,7 2L10(4L1+)so(3)) Rf

L~8 L10(5L1+) so(3)) R~

L99 6L1+)so(3) adso(3)Oadso(3)

L~10 4L10(2L1+)sl(2,R)) D~2

L~11 3L10 (A31 +)sl(2,R)) D1120D0

L~12 3L10(3L1+)sl(2,R)) D1

L~i3 2L10(4L1+)sl(2,R)) D~2

L914 2L10(4L1+)sl(2,R)) D112OD~2

L~5 L10(5L1+)sl(2,R)) D2

L916 L10(5L1+)sl(2,R)) Di0D~2

L~17 6L1+)sl(2,R) D512

L~18 6L1+)sl(2,R) D~20D~2

L~19 6L1 +)sl(2,R) D1120D1120D~

L~ 6L1+)sl(2,R)
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